Inverse matrix representation with one triangular array

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum

‎In this paper‎, ‎we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated‎, ‎self-adjoint boundary conditions and we show that such SLP have finite spectrum‎. ‎Also for a given matrix eigenvalue problem $HX=lambda VX$‎, ‎where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix‎, ‎we find a sixth order boundary value problem of Atkin...

متن کامل

The inverse along a lower triangular matrix

In this paper, we investigate the recently defined notion of inverse along an element in the context of matrices over a ring. Precisely, we study the inverse of a matrix along a lower triangular matrix, under some conditions.

متن کامل

Band Matrix Representation of Triangular InputBalanced

For generic lower triangular matrices, A, we prove that A ij = P d q=1 H iq G jq for i > j is equivalent to A = M ?1 N where M and N are d+1 banded matrices. A lower triangular matrix A is input balanced of order/rank d if there exists a rank-d matrix B such that AA = I ? BB. We prove that if A is triangular input balanced then generically, A = M ?1 N where M and N are d + 1 banded matrices. Th...

متن کامل

Strongly clean triangular matrix rings with endomorphisms

‎A ring $R$ is strongly clean provided that every element‎ ‎in $R$ is the sum of an idempotent and a unit that commutate‎. ‎Let‎ ‎$T_n(R,sigma)$ be the skew triangular matrix ring over a local‎ ‎ring $R$ where $sigma$ is an endomorphism of $R$‎. ‎We show that‎ ‎$T_2(R,sigma)$ is strongly clean if and only if for any $ain‎ ‎1+J(R)‎, ‎bin J(R)$‎, ‎$l_a-r_{sigma(b)}‎: ‎Rto R$ is surjective‎. ‎Furt...

متن کامل

-Riordan array for q -Pascal matrix and its inverse matrix

In this paper, we prove the q -analogue of the fundamental theorem of Riordan arrays. In particular, by defining two new binary operations ∗q and ∗1/q , we obtain a q -analogue of the Riordan representation of the q -Pascal matrix. In addition, by aid of the q -Lagrange expansion formula we get q -Riordan representation for its inverse matrix.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1982

ISSN: 0024-3795

DOI: 10.1016/0024-3795(82)90232-4